
Failure tolerance for a multicore real-time system
scheduled by PD2

Yves MOUAFO
LIAS-ENSMA

Teleport 2, 1 av. clément Ader
BP 40109,86961

Futuroscope-Chasseneuil
yves.mouafo@ensma.fr

Annie GENIET
LIAS-ENSMA

Teleport 2, 1 av. clément Ader
BP 40109, 86961

Futuroscope-Chasseneuil
annie.geniet@ensma.fr

Gaëlle LARGETEAU
SXlim-SIC, Univ. Poitiers

BP 30179, 86962
Futuroscope-Chasseneuil
glargeteau@sic.univ-

poitiers.fr

ABSTRACT
This work addresses the problem of failure tolerance for real-
time applications, running on a multicore hardware architec-
ture. In fact, at any time during the scheduling process, a
problem may occur on any of the processor cores, affect-
ing the task that was running on it. We focus on systems
composed of periodic independent tasks with simultaneous
first release and implicit deadlines. The system is scheduled
under the fair algorithm PD2.

Our approach is based on limited hardware redundancy:
the system will run on a processor with one more core than
required. Then we prove that, if the subtask running on
the faulty core is not rescheduled, the application can keep
running on the remaining cores without temporal or fairness
faults.

General Terms
Real-time systems, Pfair scheduling, Fault tolerance, limited
redundancy, PD2 algorithm
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Scheduling, failure, redundancy

1. INTRODUCTION
With the introduction of multicore system-on-a-chip ar-

chitectures for embedded systems, tolerance to failure is
bound to become a major aspect in application design. In
fact, it is well-known [2] [4] that technology scaling sensitizes
electronic devices to external disturbs. The overall effect is
a probability that a core of the processor fails during the ex-
ecution of the application. In this paper, we adopt the clas-
sical modeling of a real-time application [3] which consists
of a set of n independent periodic tasks S={τ1, τ2, ..., τn}.
Each task τi is submitted to hard temporal constraints and
characterized by four temporal parameters: the first release
date or offset ri, the worst-case execution time Ci, the pe-
riod Ti and the relative deadline Di. Each task τ consists
of an infinite set of instances (or jobs). An important char-
acteristic of the task τi is its utilization Ui = Ci

Ti
. For any

system of tasks S, we denote U =
∑n

i=1(Ci/Ti) the load of
the system. We assume that the temporal parameters are
known and determinist, the tasks have simultaneous first
releases (ri = 0) and implicit deadlines (Di = Ti). The sys-
tem is scheduled under the Pfair algorithm PD2 [7]. Under
these assumptions, a necessary and sufficient condition for

feasibility is: U ≤ m [6] (m denotes the number of processor
cores) and PD2 is optimal.

At any time during the scheduling process, a failure may
occur on any of the cores, affecting or not a task. It becomes
necessary to reorganize the system so that the system keeps
on running on the remaining cores without temporal or fair-
ness failures. The classical way to provide fault-tolerance on
multicore platforms (which are generalized by multiproces-
sors) is to use time and/or space redundancy [1]. The idea
is to introduce redundant copies of the elements to be pro-
tected (processor or other components), and exploit them
in the case of a fault. In time redundancy, the same soft-
ware is executed two or more times on the same CPU, and
the produced results are compared. In space redundancy,
on the contrary, the same software is executed at the same
time on different CPUs. The number of cores used to imple-
ment space redundancy is determinant for the energy con-
sumption of the processor and thus has an environnemental
impact. We propose an approach based on limited hardware
redundancy, where only one core is added to those requiered.
Thus, we prove that, using a fair algorithm such as PD2, if
the impacted subtask is not rescheduled, limited redundancy
guarantees the validity and the fairness of scheduling despite
the defection of one core.

The remainder of this paper is organized into four sec-
tions. In the next section (Section 2) PD2 algorithm is
briefly introduced.Then the limited redundancy approach is
presented (section 3). Finally, we present our experimental
studies (Section 4) and our contribution which is scheduling
with failure without re-execution of the impacted subtask
(section 5).

2. PD2 ALGORITHM
PD2 [7] is a Pfair algorithm [6] which objective is to ap-

proach an ideal scheduling in which each task τi receives
exactly Ui × t processor time units from the instant 0 to
t. The construction of a PFair scheduling involves dividing
each task τi into unitary subtasks. Each subtask τ ji (j ≥ 0)

has a pseudo-release date rji = b j
Ui
c and a pseudo-deadline

dji = d j + 1

Ui
e. The interval [rji , dji [ represents the feasability

window of the subtask τ ji . Subtasks are scheduled in increas-
ing pseudo-deadline order and when the pseudo-deadlines
are equal, PD2 uses two additional criterias to determine
the priority order between subtasks: the bit succesor bji and

the group deadline Dj
i . These criterias are defined as fol-



lows:

bji=

{
1 if rj+1

i = dji
0 otherwise

D(τ ji ) =

d
d(τ ji )− j − 1

1− Ui
e if Ui ≥ 0.5, j ≥ 0

0 otherwise

According to PD2, a subtask τ ji has priority over the sub-
task τkq if one of the following conditions is verified:

1. dji < dkq
2.dji = dkq ∧ bji > bkq
3.dji = dkq ∧ bji = bkq = 1 ∧Dj

i > Dk
q

2.1 Example of a scheduling with PD2
Let τ be the system of tasks defined by

τ = (τ1 < 2, 3 >, τ2 < 2, 6 >, τ3 < 3, 8 >, τ4 < 6, 8 >, τ5 <
5, 12 >). Figure 1 shows the PD2 schedule of the system τ
from the instant 0 to 12. Notice that U(τ) = 2.54 < 3, thus
τ is schedulable on a 3 cores processor.

Figure 1: Example of PD2 schedule

3. LIMITED REDUNDANCY APPROACH

3.1 Failure model
We consider that while the application is running, one core

of the processor failed. Moreover, the failure is permanent
and we assume that there is an instantaneous mechanism
for detection that locates the affected core [8] at the very
moment when the failure occurs. In such a case, a fault can
affect only one subtask, the one that is running on the core
which suffers the failure. All or part of this subtask will
have to be re-executed. In [5], S. MALO distinguishes two
possible scenarios:
- The failure occurs immediately after the context switch.
In this case, the application should simply continue execu-
tion on the remaining cores. We must just verify that the
reorganization is possible and does not cause a task to miss
it deadline;
- The failure occurs during the execution of the subtask.
In this case, three policies are possible: (1) Re-execution of
what has been executed since the last backup of the context;
(2) The full task is re-executed; (3) The current subtask is
simply abandoned and execution continues on the remaining
cores.

The figure 2 below gives an illustration of the scenarios
and draws the outline of the context of our contribution.

In fact, we focus on the first scenario and the third case
of the second scenario (figure 2.b). It concerns the continu-
ation of the execution on the remaining cores, either when
no subtask is affected or when the affected subtask is aban-
doned. We must therefore ensure that the application can
be reconfigured without temporal errors.

Figure 2: Failure model

3.2 Limited redundancy
Let S be a system of tasks. In the introduction it was

established that S is schedulable if and only if U ≤ m. To
overcome a failure of a core, limited hardware redundancy
is a technic which consists in providing a core more than
necessary. So, instead of running S on m cores, it will run
on m + 1 cores. So, when failure occurs, the system will
remain schedulable on the m remaining cores.

The figure 3 illustrates this technic on the system τ of the
previous example where a failure occurred on the CPU core
1 at time 6 affecting the subtask τ41 .

Figure 3: Example of scheduling with limited redun-
dancy technic

4. EXPERIMENTAL STUDY
With the above example system τ , scheduling continues

normally in case of failure with non re-execution of the im-
pacted subtask. Can we therefore generalize this technic?
To answer this question, we first conducted an experimental
study. For this, a software prototype FTA (Fault Tolerance
Analyser) was designed to simulate scheduling with fault by
Pfair algorithms. To get concluding results about our ap-
proach, a total of 550 random systems has been generated
and submitted to the simulation. The fault occurrence time
and the failing core of the processor are randomly choosen
and vary from one system to another. The experiment was
repeated 50 times on the 550 generated systems. The ob-
tained results show that, no matter the time the failure oc-
curs or the affected core, no matter the system load or the
number of heavy tasks (Ui ≥ 0.5), scheduling with fault
without reexecution guarantees the respect of validity and
fairness constraints.

In the following section, we establishh the proof of that
result.



5. SCHEDULING WITH FAULT WITHOUT
REEXECUTION OF AFFECTED SUBTASK

5.1 The result
Our main result is given by theorem 1.

Theorem 1. Any system τ = (τ1 < C1, T1 >, τ2 <
C2, T2 >, ..., τn < Cn, Tn >) which consists of n peri-
odic and independent tasks, with simultaneous first
releases and implicit deadlines feasible under the fair
algorithm PD2 on a m cores processor and running
on m+ 1 cores, remains feasible on m cores, after the
failure of one of the cores without rescheduling the
impacted subtask.

In other words, the constraints of validity and fairness are
met in the schedule even if a failure occurs on one core and
there is no re-execution of the impacted subtask.

The proof of this theorem requires the demonstration of
three lemmas. We adopt the following notations and hy-
pothesis.

5.2 Notations and hypothesis
Notations:

Om:Sequence obtained when the system is scheduled on m
cores;
O(m+1)−>m:Sequence obtained when the system is sched-
uled on a processor with m+1 functional cores initially, and
m cores after a failure;
Om(ti...tj):Sequence obtained when the system is scheduled
on a m-core processor from the instant ti to the instant tj .
Cm(t):Set of pending subtasks at time t in a schedule on a
m cores processor;
Cu(t):Set of subtasks released at time t;
Ce

m(t):Set of elected subtasks at time t in a schedule on m
cores;
Cr

m(t):Set of non-elected subtasks at time t in a scheduling
on a m cores;
t(τ ji , O):Date by which the subtask τ ji is executed in the se-
quence O;
tp: Failure time;
Rank(τ ji , C):Position of τ ji in the set C which is assumed to
be sorted according to PD2;
<PD2: Priority order of PD2 algorithm (see section 2);
S  <PD2:The subtask of the set S are sorted according to
the PD2 priority order.
Hypothesis:
U ≤ m thus Om and Om+1 are valid and fair.

5.3 Some lemmas
Lemma 1: At any time t, the set of the ready

subtasks in a m+ 1 cores schedule is included in the
set of the ready subtasks in a m cores schedule.

Cm+1(t) ⊆ Cm(t)

Proof. (lemma 1) :by induction on t.
At t = 0, Cm+1(0) = Cm(0) = Cu(0).
Assume that at t− 1 we have Cm+1(t− 1) ⊆ Cm(t− 1),
we will show that at t we have Cm+1(t) ⊆ Cm(t).
We know that the set of the ready subtasks at a time t is
composed of the subtasks released at t and the subtasks non-
elected at t-1. So,{
Cm(t) = Cu(t) ∪ Cr

m(t− 1)

Cm+1(t) = Cu(t) ∪ Cr
m+1(t− 1)

We will thus show that
Cr

m+1(t− 1) ⊆ Cr
m(t− 1).

Consider any subtask τ ji ∈ C
r
m+1(t− 1),

τ ji ∈ C
r
m+1(t− 1) means that

τ ji ∈ Cm+1(t− 1) = {τ j1i1 τ
j2
i2 ...τ

jr
ir }

and τ ji is not scheduled at t-1.
We assume that Cm+1(t− 1) is sorted according to PD2.

So,∃h,m+1 < h < r such that τ ji = τ jhih (h = Rank(τ ji , Cm+1(t−
1))).
According to induction hypothesis,
Cm+1(t− 1) ⊆ Cm(t− 1) = {τ b1a1τ b2a2...τ bnan}.
Therefore,
Rank(τ ji , Cm(t− 1)) > Rank(τ ji , Cm+1(t− 1)).
Hence,
τ ji ∈ Cm(t− 1), ∃v,m+ 1 < v ≤ n, such that τ ji = τ bvav .

Thus, τ ji is not scheduled on m+1 cores and consequently
on m cores.

Conclusion:
τ ji ∈ C

r
m(t − 1), thus Cr

m+1(t − 1) ⊆ Cr
m(t − 1), and thus,

Cm+1(t) ⊆ Cm(t).

Lemma 2: At any time t, the set of the pending
subtasks in a m+ 1 cores schedule is included in the
set of the pending subtasks in a (m + 1)− > m cores
schedule, which itself is included in the set of the
pending subtasks in a m cores schedule.

Cm+1(t) ⊆ C(m+1)−>m(t) ⊆ Cm(t)

Proof. (lemma 2) : we reason in the same way as for
Lemma 1
We first prove the second part of this inclusion, which is
C(m+1)−>m(t) ⊆ Cm(t).

At a time t ≤ tp, we have m+ 1 functionnal cores. So,
C(m+1)−>m(t) = Cm+1(t) ⊆ Cm(t) (Lemma1).
Let’s suppose that at the time t− 1 ≥ tp we have
C(m+1)−>m(t− 1) ⊆ Cm(t− 1).
We must show that at t we have C(m+1)−>m(t) ⊆ Cm(t).

We know that{
Cm(t) = Cu(t) ∪ Cr

m(t− 1)

C(m+1)−>m(t) = Cu(t) ∪ Cr
(m+1)−>m(t− 1).

So, it remains to show that
Cr

(m+1)−>m(t− 1) ⊆ Cr
m(t− 1).

For that, consider any subtask τ ji ∈ Cr
(m+1)−>m(t − 1),

τ ji ∈ C
r
(m+1)−>m(t−1) means that τ ji ∈ C(m+1)−>m(t−1) =

{τ j1i1 τ
j2
i2 ...τ

jr
ir } (sorted according to PD2) and τ ji is not sched-

uled at t-1.
As C(m+1)−>m(t − 1)  <PD2, and only m subtask was
scheduled at time t-1. Thus, ∃h,m < h ≤ r such that
τ ji = τ jhih .
According to our induction hypothesis,
C(m+1)−>m(t− 1) ⊆ Cm(t− 1) = τ b1a1τ

b2
a2...τ

bn
an.

Therefore,
Rank(τ ji , Cm(t− 1)) > Rank(τ ji , C(m+1)−>m(t− 1)).

Hence, τ ji ∈ Cm(t− 1), ∃v,m < v ≤ n, such that τ ji = τ bvav .

So, τ ji is not scheduled on m cores at t-1.
Conclusion:

τ ji ∈ C
r
m(t − 1), thus Cr

(m+1)−>m(t − 1) ⊆ Cr
m(t − 1), and

thus, C(m+1)−>m(t) ⊆ Cm(t).
The first inclusion of our lemma:

Cm+1(t) ⊆ C(m+1)−>m(t) can be proved in the same way.



Lemma 3:Any subtask is scheduled earlier in a con-
figuration of m + 1 cores without failure than in a
configuration of m + 1 cores at the beginning and
m cores after a failure, and earlier in this last con-
figuration than in a m cores configuration without
failure.

∀τ ji , t(τ
j
i , O

m+1) ≤ t(τ ji , O
(m+1)−>m) ≤ t(τ ji , O

m)

Proof. (lemma 3) As before, we first prove the second
inequality. We thus prove that
∀τ ji , t(τ

j
i , O

(m+1)−>m) ≤ t(τ ji , O
m).

Let τ ji be a subtask. At any instant t, if τ ji ∈ C
e
(m+1)−>m(t)

then τ ji ∈ C(m+1)−>m(t).
According the Lemma 2,
C(m+1)−>m(t) ⊆ Cm(t), therefore, τ ji ∈ Cm(t).
Since Cm(t) = Ce

m(t) ∪ Cr
m(t)

we have two cases to consider:
First case: τ ji ∈ C

e
(m+1)−>m(t) and τ ji ∈ C

e
m(t).

In this case, τ ji is scheduled at time t in both configurations.

So, t(τ ji , O
(m+1)−>m) = t(τ ji , O

m) = t

Second case: τ ji ∈ C
e
(m+1)−>m(t) and τ ji ∈ C

r
m(t).

In this case, τ ji is scheduled at time t in O(m+1)−>m and
will be scheduled later in Om.
So, t(τ ji , O

(m+1)−>m) = t and t(τ ji , O
m) > t

and then t(τ ji , O
(m+1)−>m) ≤ t(τ ji , O

m.
The first inequality can be proved in the same way.

With these three lemmas we can now establish the proof of
the theorem.

5.4 Theorem proof
Let us now show that even in the case of the failure of one

core, the scheduling of the system remains valid and fair,
if the affected subtask is not re-executed. In other word,
we have to prove that apart from the affected subtask, all
subtasks of systems still run in their respective feasability
windows.i.e ∀τ ji , r

j
i ≤ t(τ

j
i , O

(m+1)−>m) < dji

Proof. (THEOREM)
Let τ ji be a sub-task.

If t(τ ji , O
(m+1)−>m) < tp

then t(τ ji , O
(m+1)−>m) = t(τ ji , O

m+1)

because O(m+1)−>m(1...tp) = Om+1(1...tp).

Otherwise t(τ ji , O
(m+1)−>m) ≥ tp.

- The algorithm PD2 can schedule subtasks only if they are
ready and so, after their pseudo-release date. Therefore,
∀τ ji , r

j
i ≤ t(τ

j
i , O

(m+1)−>m).
- To prove the second inquality, let us reason by contradic-
tion. Suppose that we have
dji ≤ t(τ

j
i , O

(m+1)−>m).
According to Lemma 3,
t(τ ji , O

(m+1)−>m) 6 t(τ ji , O
m).

We would then have dji ≤ t(τ ji , O
m) and thus, Om would

not be fair.
That is contrary to our initial hypothesis (section 5.2).

Conclusion: ∀τ ji , r
j
i ≤ t(τ

j
i , O

(m+1)−>m) < dji
The sequence O(m+1)−>m is valid and fair

6. CONCLUSION
Because of the failure that may occur at any time on the

processor, fault tolerance has become a major problem of
real-time multicore systems. In this paper, we propose an

approach of tolerance named limited hardware redundancy
that consists in preventing a temporal fault due to the fail-
ure of one core by running the system on a processor with
one core more than necessary. Then, we establish the proof
that, if a failure affects one of the processor cores and the
subtask that was running on it is not re-executed, the sched-
ule can continue on the remaining cores while meeting the
constraints of validity and fairness.

However, how to ensure compliance with these require-
ments in the case of re-execution of the affected subtask?
In this regard, we have in mind the idea of adding to the
limited hardware redundancy a policy of restriction and re-
laxation of subtasks feasability windows. This is to start
the scheduling on a system of tasks with constrained dead-
lines, and to release the deadlines after failure. Thus the
execution begins with smaller feasability windows that will
expand after the failure. But one question remains: how
to calculate the deadlines of the starting system from the
system with implicit deadlines? Two approaches are possi-
ble. The first is to exploit the idle time of the scheduling
and the second is to simulate the addition to each task of
an abstract subtask which represents the re-execution of an
eventual affected subtask. Both approaches will be explored
in future works [9].
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